Ratios & Proportional Relationships

7.RP
Analyze proportional relationships and use them to solve real-world and mathematical problems.

1. Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks 1/2 mile in 1/4 hour, compute the unit rate as the complex fraction 1/2 ÷ 1/4 miles per hour, equivalently 2 miles per hour.

2. Recognize and represent proportional relationships between quantities.a
 a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing and observing whether the graph is a straight line through the origin.
 b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
 c. Represent proportional relationships by equations.
 For example, if total cost t is proportionate to the number n of items purchased at a constant price p, unit rate is the constant of proportionality.
 d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate.

3. Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.

Expressions & Equations

7.EE
Apply and extend previous understandings of addition and subtraction of fractions, add, subtract, multiply, and divide rational numbers.

1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
 a. Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom and a helium atom lose their charges by combining to form two constituents oppositely charged.
 b. Understand p + q as the number located a distance |q| from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses).
 c. Interpret sums of rational numbers by describing real-world contexts.
 d. Understand subtraction of rational numbers as adding the additive inverse, p – q = p + (–q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
 e. Apply properties of operations as strategies to add and subtract rational numbers.

2. Understand multiplication as scaling (resizing), and apply properties of operations to multiply and divide rational numbers.
 a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, such as a(b + c) = ab + ac.
 b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then p/q = p × 1/q = p × q⁻¹. Interpret quotients of rational numbers by describing real-world contexts.
 c. Apply properties of operations as strategies to multiply and divide rational numbers.
 d. Convert a rational number to a decimal using long division. Know that the decimal form of a rational number terminates in either a repeating block of digits or a repeating cycle of digits. Terminals with a repeating block or cycle are generated by the division algorithm because they are periodic decimals.

3. Solve real-world and mathematical problems involving the four operations with rational numbers.\(^\dagger\)

\(^\dagger\)Comparisons of rational numbers extend the rules for reasoning with fractional numbers to complex fractions.

Geometry

7.G
Draw construct, and describe geometrical figures and describe the relationships between them.

1. Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.

2. Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on using a straightedge and compass to construct triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

3. Describe the two-dimensional figures that result from slicing three-dimensional figures as in plane sections of right rectangular prisms and right rectangular pyramids.

4. Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

5. Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.

6. Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.

7. Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.

Statistics & Probability

7.SP
Use random sampling to draw inferences about a population.

1. Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random samples tend to produce representative samples and support valid inferences.

2. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words in several passages, predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.

3. Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.

4. Represent sample spaces for compound events with tree diagrams and conditional tables. For an event described in everyday language (e.g., “Rolling double sixes”), identify the outcomes in the sample space that describe the event.

5. Use data from a random sample to draw informal comparative inferences about two populations.\(^\dagger\)

6. Draw informal comparative inferences about two populations.\(^\dagger\)

7. Use data from a random sample to draw informal comparative inferences about two populations.\(^\dagger\)

8. Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.

 a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space that have that event occurring.

 b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., “rolling double sixes”), identify the outcomes in the sample space that describe the event.

 c. Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that a random sample of 10 donors will include at least one donor with type A blood?

\(^\dagger\)Informal inferences and compare. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a boy will be selected.

b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?

8. Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.

 a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space that have that event occurring.

 b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., “rolling double sixes”), identify the outcomes in the sample space that describe the event.

 c. Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that a random sample of 10 donors will include at least one donor with type A blood?

5. Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. A probability near 0 indicates an unlikely event, a probability near 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.

6. Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.

7. Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a boy will be selected.

b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?

8. Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.

 a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space that have that event occurring.

 b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., “rolling double sixes”), identify the outcomes in the sample space that describe the event.

 c. Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that a random sample of 10 donors will include at least one donor with type A blood?