Math Common Core Learning Standards

Ratios \& Proportional Relationships 6.RP Understand ratio concepts and use ratio reasoning to solve problems.

1. Understand the concept of a ratio and use ratio language to describe a ratio relationship
between two quantites. between two quantities. For example, "The ratio of
wings to beaks in the bird house at the zoo was $2: 1$. wings to beaks in the bird house at the zoo was $2: 1$, ,
because for every 2 wings there was I beak." "For every
vote candidate A received, candidate C received nearly becausandidate A received, candidate C received nearly
three votes."
2. Understand the concept of a unit rate a / b 2. Understand the concept of a unit rate a / b
associated with a ratio a b with $b \neq 0$ and associated with a ratio a:b with $\mathrm{b} \neq 0$,
rate language in the context of a ratio rate language in the context of a ratio
relationship. For example "This recipe has a relationship. For example, "This recipe has a ratio of
3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of 3 cups of flour to cups of sugar, so there is 3 s. cup
flour for each cup of sugur." "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger." 11
3. Use ratio and rate reasoning to solve real3. Use ratio and rate reasoning to solve real-
world and mathematical problems, e.g., by world and mathematical problems, e.g., by
reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
a. Make
a. Make tables of equivalent ratios relating quantities with whole-number measurements,
find missing values in the tables, and plot the find missing values in the tables, and plot the
pairs of values on the coordinate plane. Use pairs of values on the co
tables to compare ratios.
Solve
b. Solve unit rate problems including those involving unit pricing and constant speed. For
example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawn
being mowed? being mowed?
Find a apercent of a quantity as a rate per 100 (e.g., 30% of a quantity yeans $30 / 100$ times
the quantity): solve problems involving the quantity); solve problems involving
finding the whole, given a part and the perce Use ratio reasoning , to convert measurement
units manipulte add trant units; manipulate and transform units appropriately when multiplying or dividing
quantities.
\qquad
The Number System 6.NS Apply and extend previous understanding fractions by fractions.
4. Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story
context for $(2 / 3) \div(3 / 4)$ and use a visual fraction mode to context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to
show the quotient; use the relationship between show the quotient: use the relationship between
multiplication and divivion to explain that $(2 / 3) \div(3 / 4)=$
$8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In enereal, (a/b $) \div(1 / d)=$

 cup servings
rectanular
suquare mi?
square mi?
Compute fluently with multi-digit numbers and find common factors and multiples.
5. Fluently divide multi-digit numbers using the standard algorithm.
6. Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.
7. Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole distributive property to express a sum of two distributive property to express a sum of two
whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+$ 8 as $4(9+2)$.
Apply and extend previous understandings of numbers to the system of rational numbers.
8. Understand that positive and negative numbers are used together to describe quantities having opposit/directions or values above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
9. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in
the plane with negative number coordinates.
a. Recognize opposite signs of numbers as

Recognize opposite signs of numbers as
indicating locations on opposite sides of 0 on the number ine; recognize that the opposite of
the opposite of a number it the number itself the opposite of a number is the number itself,
e.g.,. $(-3)=3$, and that 0 is its own opposite
b. U.Enderstand signs of numbers in ordered pairs as indiciating locations in quadrants of the
coordinate plane recognize that when two coordinate plane; recognize that when two
ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.
Find and position
Find and position integers and other rational numbers on a horizontal or vertical number
line diagram; find and position pairs of integers and other rational numbers on
Understand ordering and absolute value of rational numbers.
a. Interpret statements of inequality as statements about the relative e osition of two numbers on a
number line diagram For exampe number line diagram. For example, interpret -
$3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left
to right. to right.
Write, in
Write, interpret, and explain statements of order for rational numbers in real-world
contexts. For example, write -3 oc >-7 contexts. For example, write $-3-3 \mathrm{C}>-7 \mathrm{OC}$ to
express the fact that -3 oc is warmer than -7 oC.
Understand the absolute value of a rational number as its distance from 0 on the number
line; interpret absolute value as magnitude for
a positive or negative quantity in a real-world
situation. For example, for an account balancc situation. For example, for an account balan te
of -30 dollars, write $-30 \mid=30$ to describe the size of the debt in dollars.
d. Distinguish comparisons of absolute value from statements about order. For example,
recognize that an account balance less than 30 dollars represents a debt greater than 30
dollars. dollars.
8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include u coordinates and absolute value to find distances between points with the same first
coordinate or the same second coordinate
Expressions \& Equations 6.EE
Apply and extend previous understandings
of arithmetic to algebraic expressions.

1. Write and evaluate numerical expressions
involving whole-number exponents.
2. Write, read, and evaluate expressions in
which letters stand for numbers.
a. $\begin{gathered}\text { Write expressions that record operations with } \\ \text { numbers and with hetters standing tor numbers }\end{gathered}$ numbers and with heters standing for numbers.
For example, express the calculation "Subtract
y from 5 " as 5 "
y from 5 "as $5-\mathrm{y}$.
Identify parts of an
b. Identify parts of an expression using
mathematical terms (sum, term, product matienatical erms sum, term, product,
factor, quotient, coefficient); view one or more
parts of an expression as as single entity For parts of an expression as a single entity. For
example, describe the expression $2(8+7)$ as a example, describe the expression $2(7+7$ as a
product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.
Evaluate expressions at specific values of their
variables. Include expressions that arise from variables. Include expressions that arise from
formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the
conventional order when there are no parentheses to specify a particullar order (Order of Operations). For example, use the formulas
$\mathrm{V}=53$ $\mathrm{V}=\mathrm{s}$ and $\mathrm{A}=6$ s2 to find the volume and
surface area of a cube with sides of length $s=$
1/2. 3. Apply the properties of operations to $^{\text {a }}$ 3. Apply the properties of operations to
generate equivalent expressions. For example, generate equivalent expressins the
apply the idstributive property to the
expression $3(+\mathrm{x})$ to produce the equivalent expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive
property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $\mathrm{y}+\mathrm{y}+\mathrm{y}$ to
produce the equivalent expression $3 y$.
3. Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless ofs which
value is substituted into them). For example value is substituted into them). For example,
the expressions $y+y+y$ and $3 y$ are equivalent the expressions $y+y+y$ and $3 y$ are equi
because they name the samenumber
regardless of which number y stands for.
Reason about and solve one-variable
equations and inequalities.
4. Understand solving an equation or
inequality as a process of answering a
question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true
5. Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a
variable can represent an unknown number, or depending on the purpose at hand any or, depending on the purp
number in a specified set.
6. Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.
7. Write an inequality of the form $x>c$ or x c to represent a constraint or condition in real-world or mathematical problem. Recognize x mave infinitely many solution $x>$ represent solutions of such inequalities number line diagrams. number line diagrams. Represent and analyze quantitative
relationships between dependent and independent variables.
8. Use variables to represent two quantities in a real-world problem that change in
relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the othe quantity, thought of as the independent variable. Analyze the relationship between the graphs and tables, and relate these to the graphs and For example in a problem involv motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $\mathrm{d}=65$ to represent the relationship between distance and time Geometry
6.G

Solve real-world and mathematical
problems involving area, surface area, and volume

1. Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in tichercal problems. and mathematical problems.
prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism.

Apply the formulas $V=l w h$ and $V=b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of
solving real-world and mathematical problems.
3. Draw polygons in the coordinate plane given coordinates for the vertices; use points with the same first or a side joining same second coordinate. Apply these techniques in the context of solving real-wor and mathematical problems.
4. Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematica problems.
Statistics \& Probability 6.S
Develop understanding of statistical variability.

1. Recognize a statistical question as one that question and accounts for it in the answers. For example "How old ly" in wot a staswer For example, "How old am 1. is not a statistical
question, but ""ow old are the students in my shool?"
a statistical question because one anticipates variability" a statistical question because one anticipates variability
in sutudsts ages.
in students' ages.
2. Understand that a set of data collected to which can be described by its center, spread, and overall shape.
3. Recognize that a measure of center for a numerical data set summarizes all of its value with a single number, while a measure of variation describes how its values vary with a single number.
Summarize and describe distributions. 4. Display numerical data in plots on a number line, including dot plots, histograms, and box plots.
4. Summarize
to their context, such as by
a. Reporting the number of observations.
a.
b.
Reporting ning the nature of of the attrvibute und under
investigation including how it was measured investigation, incluaing how and its units of measurement.
c. Giving quantitative measures of center (median and/or mean) and variability
(intercuartile range and/or mean interquartule range andior mew asolute pattern and any striking deviations from the overall pattern with reference to the context
which the data were arthered
d. Relating the choice of measures of center and variability to the shape of the data distributio and the context in which the data wer
gathered.
